1 Work out $5.92 \div 0.16$

$$= \frac{592}{16} = \frac{296}{8}$$

37

(Total for Question 1 is 3 marks)

Write 324 as a product of powers of its prime factors.

2 4 2 x 3

(Total for Question 2 is 3 marks)

3 (a) Work out
$$2\frac{2}{3} + 1\frac{3}{5}$$

Give your answer as a mixed number.

$$\frac{40}{15} + \frac{24}{15} = \frac{64}{15} = 4\frac{4}{15}$$

(b) Work out $\frac{2}{3} = \frac{3}{4}$

$$\frac{2}{3} \times \frac{4}{3} = \frac{8}{9}$$

(2)

(Total for Question 3 is 4 marks)

4 Work out the value of
$$\frac{5^{-3} \times 5^7}{5}$$

125

(Total for Question 4 is 2 marks)

Tracey writes down three numbers a, b and c. 5

$$a : b = 3 : 5$$

 $a : c = 4 : 7$

(a) Find **Q**:**b**: **C**

$$\frac{5}{3}$$
 × 4 = 20

Jamie writes down three numbers d, e and f.

$$d = 2e$$

 $f = 3d$

(b) Find e:d:f

$$f = 3(2\pi) = 6\pi$$

(Total for Question 5 is 4 marks)

6 The diagram shows a cuboid.

$$pressure = \frac{force}{area}$$

The cuboid has height 3 m

The volume of the cuboid is 21 m³

The pressure on the floor due to the cuboid is 25 newtons/m²

Work out the force exerted by the cuboid on the floor.

Asea of base:
$$\frac{21}{3}$$
: 7 m

newtons

(Total for Question 6 is 3 marks)

7 In a bag there are counters.

The counters are all either red or blue or yellow.

The number of red counters : The number of blue counters : The number of yellow counters = 4:5:8

The number of yellow counters is 24 more than the numbers of blue counters.

Work out the total number of counters in the bag.

136

(Total for Question 7 is 3 marks)

8 AB C is a triangle.

AEC and APBare straight lines.

ED is parallel to $\angle B$. Angle $\angle ED = 122^{\circ}$ Angle $\angle BC = 59^{\circ}$

Work out the size of angle CAB

You must give a reason for each stage of your working.

(Total for Question 8 is 5 marks)

9 Roy spins a biased 5-sided spinner 48 times.

Here are his results.

Score	1	2	3	4	5
Frequency	9	10	6	7	16

Roy is now going to spin the spinner another two times.

Work out an estimate for the probability that he gets a score of 5 both times

$$\frac{16}{48} = \frac{1}{3}$$

$$P(55) = \frac{1}{5} \times \frac{1}{3} = \frac{1}{9}$$

(Total for Question 9 is 2 marks)

$$2x - y = 4$$
 x 5 -0 **x 2**

$$y = \frac{6}{9} = -\frac{2}{3}$$

$$2x - \left(-\frac{2}{3}\right) = 4$$

$$2x + \frac{2}{3} = 4$$

$$6x + 2 = 12$$

$$2: \frac{10}{6} = \frac{5}{3}$$

$$x = \frac{5}{3}$$

$$\gamma = -2/3$$

(Total for Question 10 is 4 marks)

11 Work out the value of
$$8^{\frac{4}{3}} \uparrow \left(\frac{1}{3}\right)^{-3}$$

$$8^{\frac{4}{3}} = (\sqrt[3]{8})^{4} = (2)^{4} = 16$$

$$\left(\frac{1}{3}\right)^{-3} = \frac{3}{3} = 27$$

43

(Total for Question 11 is 3 marks)

12 There are P counters in a bag. 60 of the counters are white.

Jill takes at random 50 counters from the bag. 8 of these 50 counters are white.

Work out an estimate for the value of P.

(Total for Question 12 is 2 marks)

13 The cumulative frequency table shows the height, in cm, of some tomato plants.

Height	Cumulative Frequency		
140 < h ≤150	7		
140 ≤ h ≤ 160	17		
140 < h ≤ 170	32		
140 < h ≤ 180	51		
140 < h ≤ 190	57		
140 < h ≤200	60		

(a) On the grid, plot a cumulative frequency graph for this information.

(b) Use the graph to find an estimate for the median height of the plants.

14 \mathcal{X} is inversely proportional to \mathcal{Y}

Complete the table of values.

2	80	16	5	4
y	2	10	32	40

15 The straight line L has equation
$$2y + 3\chi - 9 = 0$$

Find an equation of the straight line perpendicular to L that passes through (3, -7)

$$ay = -3x + q \qquad m_1 = -\frac{3}{4} (: 1, 1)_2 \ge 3$$

$$y = -\frac{3}{4}x + \frac{q}{2} \qquad m_2 = \frac{2}{3} \qquad m_1 = -\frac{1}{m_2}$$

$$y = \frac{3}{4}x + C$$

$$-7 = \frac{2}{4}(3) + C$$

16 The box plot shows the number of visitors to a park on each of 180 days.

Work out an estimate for the number of days there were fewer than 350 visitors to the park.

$$\frac{3}{4}$$
 03 180 = $\frac{3}{4} \times \frac{180}{7}$
= 13.5 (Total for Question 16 is 2 marks)

Prove that the difference between the squares of two consecutive odd numbers is a multiple of 8.

Let
$$ant1$$
 & $ant3$ are 2

Consecrative odd ua .

 $(an + 3)^{3} - (an + 1)^{2}$
 $(4n + 6n + 9) - (4n + 4n + 1)$
 $= 4n^{3} + 6n + 9 - 4n^{2} - 4n - 1$
 $= 8n + 8$
 $= 8(n+1) = always 9 multiple 0) 8$

(Total for Question 17 is 4 marks)

A and B are points on the circumference of a circle, centre \triangle . $A \subset$ is a tangent to the circle.

OBC is a straight line.

$$\mathcal{O}\mathcal{A} = 5 \text{ cm}$$

$$\mathcal{A}\mathcal{C} = 12 \text{ cm}$$

Find the length of BC.

You must show all your working.

$$0A^{2} + Ac^{2} = 0c^{2}$$
 $5^{2} + 12^{2} = 0c^{2}$
 $169 = 0c^{2}$
 $0C = 13$ CM
 $0B$ is radius so $0B = 5$ CM
 $BC = 0C - 0B$
 $= 13 - 5$

(Total for Question 18 is 4 marks)

cm

19 A cone has height 12 cm and volume 72π cm³.

Find the diameter of the cone.

Give your answer in the form $Q \int b$ where Q is an integer and b is a prime number.

$$72 \dot{\eta} = \frac{1}{3} \dot{\eta} \gamma^{2} (12)$$

$$72 = 47$$

$$3^{2} = 72 = 18$$

$$7 = \sqrt{18} = \sqrt{9x2}$$

$$7 = 3\sqrt{2}$$

$$iqmeter = 27 = 2x3\sqrt{2}$$

$$= 6\sqrt{2}$$

(Total for Question 19 is 4 marks)

20 β , β and ζ are three points such that

$$\overrightarrow{AC} = 6\mathbf{a} + 9\mathbf{b}$$

$$\overrightarrow{AC} = 10\mathbf{a} + 15\mathbf{b}$$

(a) Prove that A, B and C lie on a straight line.

= 5(29+36)

8 pc are both multiple of (2a+3b)

(2)

(3)

pass through and both

Three points), Fand F lie on a straight line such that

$$\overrightarrow{DE} = 4\mathbf{a} - 5\mathbf{b}$$

$$\overrightarrow{=} = -12\mathbf{a} + 15\mathbf{b}$$

Find the ratio

length of $\mathcal{D}_{\mathcal{F}}$: length of $\mathcal{D}_{\mathcal{F}}$

$$DF = DF + FF$$

$$= (4q - 5b) + (-12q + 15b)$$

$$DF = -8q + 10b$$

$$= -2(4q - 5b)$$

$$= -2(4q - 5b)$$

$$F = -2DE$$

$$2:1$$

$$F = -2DE$$

$$3:1$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(4q - 5b)$$

$$(3)$$

$$(3)$$

$$(4q - 5b)$$

$$(3)$$

$$(3)$$

$$(4q - 5b)$$

$$(4q - 5b)$$

$$(5d)$$

$$(5d)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(4q - 5d)$$

$$(3)$$

$$(3)$$

$$(4q - 5d)$$

$$(4q - 5d)$$

$$(4q - 5d)$$

$$(5d)$$

$$(3)$$

$$(3)$$

$$(4q - 5d)$$

$$(4q - 5d)$$

$$(4q - 5d)$$

$$(4q - 5d)$$

$$(5d)$$

$$(5d)$$

$$(7d)$$

$$(7$$

$$f(\chi) = 3\chi^2 + 1 \text{ for } \chi > 0$$

and

$$g(x) = 2x - 3$$

(a) Find $f^{-1}(\chi)$

$$x = 39 + 1$$

$$x-c=3y^2$$

$$f'(x) = \sqrt{\frac{x-1}{3}}$$

(b) Solve gf(z) = 95

$$2(3x^{8}+1)-3=95$$

$$6x^2 + 2 - 3 = 95$$

(3)

(Total for Question 21 is 5 marks)

Write
$$\frac{\sqrt{8}}{3-\sqrt{2}}$$
 in the form $\frac{2\sqrt{2} + b}{C}$ where a , b and c are integers.

$$\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}$$

$$\frac{2J_2}{3-J_2} \times \frac{(3+J_2)}{(3+J_2)}$$

$$\begin{array}{c} -6\sqrt{2} + 4 \\ \hline 9 - 3\sqrt{2} + 3\sqrt{2} - 2 \end{array}$$

$$= \frac{6\sqrt{2} + 4}{9 - 2}$$

$$=6\sqrt{2}+4$$

(Total for Question 22 is 4 marks)

$$25 - \chi^2 > 0$$
 and $3\chi^2 - 17\chi - 6 < 0$

You must show all your working.

$$x = -\frac{1}{3}$$

3(2(5

(Total for Question 23 is 5 marks)