1 The height of a building is 310 metres, correct to the nearest metre.

Complete the error interval for the height of the building.

389.5_m length < 318.5_m

(Total for Question 1 is 2 marks)

Work out $(3.12 \times 10^{-6}) \div (2.5 \times 10^{-4})$

Give your answer in standard form.

1. 248 x 10

(Total for Question 2 is 2 marks)

3 Three buses, bus A, bus B and bus C, all use the same bus stop.

Bus A runs every 10 minutes.

Bus B runs every 12 minutes.

Bus C runs every 14 minutes.

All three buses are at the bus stop at 11 am.

What time will all three buses next be at the bus stop.

(Total for Question 3 is 3 marks)

4 The table gives information about the times taken, in seconds, by 20 students to run a race.

<u>x</u> f	Frequency •	Coint	mid	Time (t seconds)
45	2	5	22.	20 < t ≤ 25
275	10	5	27.	25 < 大≤ 30
162.	5		38.	30 < t ≤ 35
120	3	2	40	35 < t ≤ 45
	2			

Work out an estimate for the mean time.

$$\frac{\text{Efz}}{\text{Ef}} = \frac{602.5}{20} = 30.125$$

30.1

seconds

(Total for Question 4 is 3 marks)

5 ABCD is a trapezium.

AB is parallel to DC Find the size of angle BCD.

$$3x + 19 + 3x - 6 = 180$$
 (co - interior $9x + 13 = 180$ and $9x + 13 = 167$
 $5x = 167$
 $5x = 33.4$

$$\angle ABC = 4x - 57$$

$$= 4(33.4) - 57$$

$$= 76.6$$

$$2BCD = 180 - 76.6$$

$$= 103.4$$

103.4

(Total for Question 5 is 4 marks)

χ	-2	-1	0	1	2	3	4
y	-1	4	7	8	7	4	-1

(2)

(b) On the grid, draw the graph of $y = 7 + 2x - x^2$ for values of from -2 to 4

(c) Use your graph to find estimates of the solutions of the equation $7 + 2x - \chi^2 = 0$

(Total for Question 6 is 6 marks)

Josh drove 39 miles from Luton to Cambridge.
 He then drove 63 miles from Cambridge to Norwich.

Speed = distance

Josh's average speed from Luton to Cambridge was 32 miles per hour Josh took 80 minutes to drive from Cambridge to Norwich.

t : d

Work out Josh's average speed for his total drive from Luton to Norwich.

$$=\frac{80}{60}=\frac{4}{3}:1.3$$
 heyrs

Total time:
$$\frac{39}{32} + \frac{4}{3} = 2.552083...$$

40.0

.... miles per hour

(Total for Question 7 is 4 marks)

8 Milly invests £2000 in a savings account for 4 years. She gets 3.9% per year compound interest.

Work out how much money Milly will have in her savings account at the end of 4 years. Give your answer correct to the nearest pound.

$$2000 \times 1.039$$
 $3.9\% in (rease)$
 103.9%
 $= 1.039$

£ 2331

(Total for Question 8 is 3 marks)

9

Work out the size of angle $\mathcal{B} A \subset$ Give your answer correct to 3 significant figures.

$$x = \tan^{-1}\left(\frac{7.5}{12.1}\right)$$

(Total for Question 9 is 2 marks)

10 The diagram shows triangle Aβc.

ADB is a straight line.

the size of angle βCD : the size of angle ACD = 2:3

Work out the size of angle ADC

(Total for Question 10 is 4 marks)

A company has 9 employees available to complete a job. It is known that 7 employees can complete the job in 12 days.

Davina says that the 9 employees will be able to complete the job in less than 10 days.

Is Davina correct?

You must show all your working.

$$7 \times 12 = 84$$
 $84 \div 9 = 9.3 days$
 $9.3 < 10$ Yes

(Total for Question 11 is 3 marks)

12 The box plots show the time it took year 7 and year 11 students to travel to school on one day.

Compare the distribution of the times it took the year 7 and year 11 students to travel to school.

- The median time taken for 47 is lower,
Year 7 take less time to travel.

- The IBR range of yv students is
equester

(Total for Question 12 is 2 marks)

13 In a restaurant there are 7 starters, 9 main courses and 6 desserts on the menu.

Work out the total number of ways of choosing a starter, a main course and a dessert.

378

(Total for Question 13 is 2 marks)

14

A, B, C and D are points on the circumference of a circle, centre O.

Angle $ADC = 118^{\circ}$ Angle $Aoc = 2^{\circ}$

Work out the value of 2 You must show all your working.

> 180'-118' = 62' (opposite angles in cyclic auad. add to 180)

x = 62 x 2 = 124

Angle at circum Jerence Total for Question 14 is 3 marks)

15 The cumulative frequency graph gives information about the time, in seconds, each of 60 people took to complete a puzzle.

Use the graph to complete the frequency table to give information about the time, seconds, each of the 60 people took to complete the puzzle.

		5461796 F
Time taken	Frequency	
0 < t ≤ 20	6	6-0
20 < ৮≤ 40	10	16-6
40 < € ≤ 60	2 2	38-K
60 < t ≤ 80	12	20 - 38
$80 < t \le 100$	7	57 - 50
100 < € ≤ 120	3	60-57

(Total for Question 15 is 2 marks)

Here are 9 cards. Each card has a number on it.

1 2 3 4 5 6 7 8 9

Emma takes two cards at random.

Work out the probability that the sum of the two cards is an odd number.

$$P(E0) + P(OE)$$
= $\left(\frac{4}{9} \times \frac{5}{8}\right) + \left(\frac{5}{9} \times \frac{4}{8}\right)$
= $\frac{20}{72} + \frac{20}{72} = \frac{40}{72}$

(Total for Question 16 is 3 marks)

17 (a) Using
$$x_{\eta \uparrow 1} = \sqrt{6x - 1}$$

with
$$\mathcal{Z}_0 = 5$$

(a) Find the values of x_1, x_2 and x_3 .

$$x_1 = \sqrt{6(57-1)}$$

$$\pi_1 = \sqrt{6(57-1)} = \sqrt{29} = 5.3851698$$

$$\alpha_{a} = \sqrt{6\alpha_{l}-1}$$

(b) Explain the relationship between the values of \mathbf{r}_1 , \mathbf{x}_2 and \mathbf{x}_3 and the equation $\mathbf{x}_2 - 6\mathbf{x} + 1 = 0$

$$\pi = \sqrt{6\alpha - 1}$$

goe estimates on the

(2)

(Total for Question 17 is 5 marks)

18 The graph below shows the speed of a car, in metres per second, ¿seconds after it starts moving.

(a) Calculate an estimate for the gradient of the graph when t=7 You must show how you get your answer.

$$\frac{dy}{dx} = \frac{10 - 0}{3 \cdot 4} = \frac{10}{3 \cdot 6} = 2.7$$

$$\frac{2.7}{3 \cdot 6} = \frac{3.7}{3 \cdot 6} = \frac{3.7}{3 \cdot 6}$$

(b) Describe what the gradient in part (a) represents.

(1)

(Total for Question 18 is 4 marks)

Show that $\frac{2x}{\chi - 3} - \frac{3x - 1}{\chi + 3} + 1$ can be written in the form $\frac{\alpha \chi + b}{\chi^2 - 9}$ where α and β are integers.

$$\frac{2x(x+3)}{(x-3)(x+3)} = \frac{(3x-1)(x-3)}{(x+3)(x-3)} + \frac{(x+3)(x-3)}{(x+3)(x-3)}$$

$$= \frac{2x^{2}+6}{2^{2}-9} - \frac{(3z^{2}-10x+3)}{2^{2}-9} + \frac{z^{2}-9}{z^{2}-9}$$

$$= \frac{2x^{2}+4-3x^{2}+10x-3-x^{2}+9}{x^{2}-9}$$

$$= \frac{16 \times -12}{x^{2}-9}$$

Here is a shape formed from two triangles ABC and CDE.

A CD and BCE are straight lines.

$$\mathcal{HC} = 12 \text{ cm}$$
 $\mathcal{BC} = 15 \text{ cm}$ $\mathcal{CC} = 16 \text{ cm}$ $\mathcal{CD} = 10 \text{ cm}$
Angle $\mathcal{BAC} = 78^{\circ}$

Work out the length of \mathcal{D} .

9:18.3487 cm

Give your answer correct to 3 significant figures.

$$\frac{\sin x}{12} = \frac{\sin 78}{15} \qquad y = 180 - (78 + 51.4917...)$$

$$= 50.50828...$$

$$\sin x = \frac{\sin 78}{15} \times 12$$

$$= 0.7885...$$

$$x = \sin^{-1}(0.7885...)$$

$$x = 51.4917...$$

$$\frac{8}{4} = b^{2} + c^{2} - 2bc \cos 14$$

$$= 10^{2} + 16^{2} - 2(10)(16) \cos (50.508...)$$

$$= 158.49$$

(Total for Question 20 is 5 marks)

12.3

21 Solve algebraically the simultaneous equations

$$x^{2}+2y^{2}=10$$

$$3x = 2y + 8$$

$$2 = \frac{2y + 8}{3} - (3)$$

$$4y + \frac{2}{3} + 2y + 64 + 2y^{2} = 10$$

$$4y^{2} + 32y + 64 + 18y^{2} = 90$$

$$22y^{2} + 32y - 24 = 0$$

$$11y^{2} + 16y - 13$$

$$2 = 16 \pm \frac{16^{2} - 4(11)(-(3))}{2(11)}$$

$$2 = -2.035$$

$$3x = -210$$

$$2x + 16y = -2.035$$

$$3x = -3.05$$

$$3x$$

(Total for Question 21 is 5 marks)

$$D = \frac{M}{V}$$

Work out the upper bound for the density of the cube. Give your answer in g/cm³ correct to 2 decimal places.

2. 10 g/cm³

(Total for Question 22 is 4 marks)

23 The diagram shows quadrilateral OABC

ADB and ODC are straight lines.

$$AB = -59 + 6b$$

Using a vector method, find the ratio
$$\overrightarrow{AD}$$
: \overrightarrow{D} = $2(-5q + 6b)$

Using a vector method, find the ratio $\overrightarrow{AD}: \mathcal{D} \mathcal{B}$

$$-57 = -5 + 7(22)$$
 $K = 27$

$$x = \frac{5}{19} : \frac{19}{19} : \frac{5}{19}$$

(Total for Question 23 is 5 marks)